QUADRATIC FORMS WHICH REPRESENT ALL INTEGERS

BY L. E. DICKSON

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO

Communicated October 21, 1926

We shall give generalizations of the classic theorem that every positive integer is a sum of four squares. We seek all sets of positive integers a, b, \ldots such that every positive integer can be expressed in the form $f = ax^2 + by^2 + \ldots$ We may arrange the terms so that $a \le b \le c \ldots$ Since f shall represent 1 and 2, evidently a = 1, b < 3. Hence either $f = x^2 + y^2 + cz^2 + \ldots$ or $f = x^2 + 2y^2 + cz^2 + \ldots$ If c > 3 in the former, then $f \ne 3$. If c > 5 in the latter, then $f \ne 5$. Hence the sum of the first three terms of f is one of the following ternary forms:

 $t_1 = x^2 + y^2 + z^2, \quad t_2 = x^2 + y^2 + 2z^2, \quad t_3 = x^2 + y^2 + 3z^2, \\ t_4 = x^2 + 2y^2 + 2z^2, \quad t_5 = x^2 + 2y^2 + 3z^2, \quad t_6 = x^2 + 2y^2 + 4z^2 \\ t_7 = x^2 + 2y^2 + 5z^2.$

The least positive integer l_i not represented by t_i is as follows: $l_1 = 7$, $l_2 = 14$, $l_3 = 6$, $l_4 = 7$, $l_5 = 10$, $l_6 = 14$, $l_7 = 10$. This proves that not all positive integers are represented by any form $ax^2 + by^2 + cz^2$ in which a, b, c are positive integers. It proves also that, if $f = t_i + d_iu^2 + \ldots$ represents all positive integers, then $d_i \leq l_i$. By hypothesis, d_i is not less than the coefficient of z^2 . Hence the first four coefficients of f are those in one of the following 54 sets:

or else 1,2,5,5. But the latter are the coefficients of

$$q = x^2 + 2y^2 + 5z^2 + 5u^2,$$

which does not represent 15, since $x^2 + 2y^2$ does not represent 5, 10 or 15, while $z^2 + u^2 \neq 3$. This exceptional value was overlooked by Ramanujan.¹ Without proof he stated empirical theorems on the forms of numbers represented by t_1, \ldots, t_n . Recently these theorems have been completely proved by the writer.² From them we readily conclude that every positive integer can be represented by each of the 54 forms in four variables whose coefficients are given by (1), and that q represents all positive integers except 15.

Consider a form $f = ax^2 + by^2 + ...$ in $n \ge 5$ variables which represents all positive integers. We have shown that the first four coefficients

are 1,2,5,5 or a set (1). In the latter case the remaining coefficients are arbitrary. The only interesting case is, therefore, $f = q + ev^2 + \ldots$ such that no quaternary form, obtained by deleting all but four terms of f, represents all integers. Then e < 16, since otherwise f = 15 would require q = 15, which was seen to be impossible. The values 6,7,8,9,10 of e are excluded, since the abridged form $x^2 + 2y^2 + 5z^2 + ev^2$ was seen to represent all positive integers. Hence e = 5,11,12,13,14 or 15. In these respective cases, we see that f represents 15 when z = u = v = 1; x = 2, v = 1; x = y = v = 1; y = v = 1; x = v = 1; v = 1; with all further variables zero. We may, therefore, state the

THEOREM. If, for $n \ge 5$, $f = a_1x_1^2 + \ldots + a_nx_n^2$ represents all positive integers, while no sum of fewer than n terms of f represents all positive integers, then n = 5 and $f = x^2 + 2y^2 + 5z^2 + 5u^2 + ev^2$ (e = 5,11,12,13,14,15), and these six forms f actually have the property stated.

¹ Ramanujan, Proc. Cambridge Phil. Soc., 19, 11 (1916-9).

² Dickson, Bull. Amer. Math. Soc., 33 (1927).

CONGRUENCES OF PARALLELISM OF A FIELD OF VECTORS

By Luther Pfahler Eisenhart

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY

· Communicated November 10, 1926

1. In a geometry of paths the equations of the paths may be written in the form

$$\frac{dx^{i}}{dt}\left(\frac{d^{2}xj}{dt^{2}}+\Gamma_{kl}^{j}\frac{dx^{k}}{dt}\frac{dx^{l}}{dt}\right)-\frac{dx^{i}}{dt}\left(\frac{d^{2}x^{i}}{dt^{2}}+\Gamma_{kl}^{i}\frac{dx^{k}}{dt}\frac{dx^{l}}{dt}\right)=0, (1.1)$$

t being a general parameter and Γ_{kl}^{i} functions of the k's which are symmetric in k and l; a repeated Latin index indicates the same from 1 to n of that index. These functions serve to define infinitesimal parallelism of vectors and accordingly are called the coefficients of the affine connection. We may go further and say that if λ^{i} are the components of a field of contravariant vectors and C is any curve of the space (at points of which the x's are given as functions of a parameter t), the vectors of the field at points of C are parallel with respect to C, when, and only when,

$$(\lambda^h \lambda^i_{,j} - \lambda^i \lambda^h_{,j}) \frac{dxj}{dt} = 0, \qquad (1.2)$$

where

$$\lambda_{,j}^{i} = \frac{\partial \lambda^{i}}{\partial x_{j}} + \lambda^{h} \Gamma_{hj}^{i}.$$
(1.3)